Interdisciplinary Distinguished Lecturer: Dr. Mark Ablowitz

IDSS logo

Nonlinear Waves from Beaches to Photonics

Dr. Mark Ablowitz, Professor and the department chair of Applied Mathematics
University of Colorado

Dr. Mark Ablowitz spoke on Friday, January 17th, 2014 at 1:00PM in Engineering Building II, Room 1230

The study of localized waves has a long history dating back to the discoveries in the 1800s describing solitary water waves in shallow water. In the 1960s researchers found that certain equations, such as the Korteweg-deVries (KdV) and nonlinear Schrodinger (NLS) equations arise widely. Both equations admit localized solitary wave--or soliton solutions. Employing a nonlocal formulation of water waves interesting asymptotic reductions of water waves are obtained. Some solutions will be discussed as well as how they relate to ocean observations. In the study of photonic lattices with simple periodic potentials, discrete and continuous NLS equations arise. In non-simple periodic, hexagonal or honeycomb lattices, novel discrete Dirac-like systems and their continuous analogs can be derived. They are found to have interesting properties. Since honeycomb lattices occur in the material graphene, the optical case is termed photonic graphene.