Low Power Design

Dr. Paul D. Franzon

Outline
1. Power consumption in CMOS
2. Strategies to reduce consumption

References
- Smith and Franzon, Chapter 11
- Weste and Harris, Principles of CMOS VLSI Design, A Systems Perspective
Objectives

• Identify why low power design is important.
• Understand the difference between low power design and low energy design.
• Understand static and dynamic power sources in static CMOS circuits.
• Identify techniques to reduce power consumption.
Power Consumption

Why is power consumption important?

- Battery powered devices
 - Maximize battery life
- Limit requirements of cooling
 - Temperature control of chip is important
 - Typically want chip transistor temperature to be ~90°C
 - Higher temperatures slow chips down, increases transistor leakage
 - On/off thermal cycles fatigue solder and other connections reducing reliability
 - Plastic packaging is 10x cheaper than ceramic packaging but can only dissipate 1 - 2 W
 - Fans, heat pipes etc. are need and get more expensive as heat flux increases
 - Becoming an issue even in mobile devices!
Power Consumption

...Why is power consumption important?

- As power requirements go up, the cost of delivering the power to the chips increases
 - Copper bus-bars
 - Power regulators/supplies
 - efficiency ~ 30% ➞ lose 30% of power even before it gets to the chip
 - Before that roughly ~30% of nations power consumption in the electrical grid is spent on overcoming distribution losses

- Green systems
 - About 1% of world's power goes to electronics, and is increasing
 - About 20% of home power goes to electronics, and is increasing
 - Greenhouse gas issues
Power Consumption

Power is increasingly the MAJOR constraint on system performance

- The major constraint used to be #transistors/die. Now it is power.
- Battery driven Wireless systems
 - System Performance is limited by how much data can be communicated and processed on a single battery charge
 - Want this capacity to permit a battery life of more than a day
- Desktop systems
 - Without attention, power consumption of circa 2015 CPUs would be 1 kw or more ➔ Impossible to air cool
 - Without attention, power consumptions of chips like HDTV decoders would be 100+W ➔ Expensive to cool
- Server farms and Supercomputers
 - Without attention, power consumption of next generation server farms would be > 20 MW ➔ requires multiple power substations, not one
Power Consumption

Static CMOS Circuits:

- Static Power (when circuit not switching)
 - Leakage
 - Sub-threshold Drain to source
 - Gate
 - Some libraries are starting to include low-leakage cells, or cells that can be switching to a low leakage state
- Dynamic Power (when logic transitions occur)
 - `through` current small during switching
 - Toggling power when output node changes logic state
CMOS Circuit

Circuit during switching event

• E.g. Inverter driving a load:
 • Power dissipated in resistors in 010 cycle = potential energy stored and released on capacitor during that cycle
 \[Q = CV_{dd} \]
 \[E = QV_{dd} = CV_{dd}^2 \]
 \[P = E/T = CV_{dd}^2/T \]
 \[= N_{\text{switch}} CV_{dd}^2 f_{\text{clock}} \]

• Alternative derivation:
 • When \(V_{out} \rightarrow 1 \), energy dissipated in top resistor:
 \[
 E = \int_{0}^{V_{dd}} (V_{dd} - V_{out})Idt = \int_{0}^{V_{dd}} (V_{dd} - V_{out})CdV_{out} = \frac{CV_{dd}^2}{2}
 \]
 \[
 \Rightarrow I = C \frac{dV_{out}}{dt}
 \]

\[Q = CV_{out} \]
Minimizing Power Consumption

Power consumption in a CMOS module:

\[\text{Power} = \sum N_{\text{switch}} f Vcc^2 C_{\text{load}} + \text{leakage power} \]

- Sum over all nodes in circuit
- \(f \) = clock frequency
- \(N_{\text{switch}} \) = average % of clock periods in which node toggles (i.e. 010 or 101)
- \(C_{\text{load}} \) = capacitance of node

\(N_{\text{switch}} \)

- Clock:
- Maximum for glitch-free logic:
- Logic typically has \(N_{\text{switch}} \sim 0.1 \)
Minimizing Energy

Energy = \intPower.dt

Energy consumption in a CMOS module:

$$\text{Energy} = \sum_{\text{cycles}} \sum_{\text{nodes}} N_{\text{switch}} f Vcc^2 C_{\text{load}} + \text{leakage power}$$

- f = clock frequency
- N_{switch} = average % of clock periods in which node toggles (I.e. 010 or 101)
- C_{load} = capacitance of node

Note: Power reduction techniques do not save energy/complex operation if more cycles are needed to complete that operation
- Important in energy-constrained (e.g. battery driven) systems
Approaches to minimizing power consumption

Approaches to minimizing power consumption

- **Reduce Supply Voltage**
 - E.g. Use low-Vdd cells in non critical paths
 - Practical limit ~ 600 mV
 - When Vdd < 2*V_{threshold}, performance goes down quickly

- **Reduce clock frequency**
 - Reduce frequency, or even turn off clock, when block in “idle” mode
 - “clock gating” or regulating
 - Note, reduces power but not energy to complete a complex operation

- **Reduce “useless” toggling**
 - Use designer knowledge to identify useless switching and redesign to reduce it
 - Use an algorithm that reduces total number of toggles required to compute a result
Approaches to minimizing power consumption

Static Power

- Significant issue at 65 nm transistor sizes and smaller
- When performance is not an issue, use a low leakage cell library
- Use low leakage cells in non-critical paths
- Use cells with sleep transistors to reduce leakage in modules that are idle for long periods
Reducing “Useless” toggling at logic level

Example:
reg [31:0] A, B, D;
always@(posedge clock)
 begin
 if (C) D <= A+B;
 else D <= A;
 end

Possible ways to reduce power:
Toggling Reduction

If C is low a lot...

```
assign E=C?A:0;
assign F=C?B:0;
always@(posedge clock)
  if (C) D <= E+F;
  else D <= A;
```

Only useful if C is low more than 50% of the time.
Other Alternatives

- Store previous value of A and B in a register
 - Used instead of 0 input to mux
 - Must consider power overhead of register (including extra Cload on clock)
 - Not likely to be beneficial here
 - Might be beneficial for a larger design (e.g. multiplier)

Energy in MULT wasted if B does not select new mult output and inputs change

Overhead of FF acceptable here if B does not change a lot
System Level Power Reduction

Clock Gating

- Done ABOVE module level
- One clock per module → Gated clock has to feed at least one module
- NOT done by designer inserting logic in clock tree
 - Most timing tools can not perform timing calculations with gated clocks
 - Increases clock skew if not done well
- INSTEAD use system level resources to create gated clocks
 - Done as part of clock sub-system design NOT logic design

Memory Management

- DRAM energy ~ 60 – 600 pJ/bit
 - Energy/bit very dependent on DRAM access patterns
Summary

• What determines power consumed in a CMOS circuit?

\[P = \sum CV_{dd}^2 f_{node} + \text{leakage} \]

• What strategies can you use to reduce power consumption?

• If Energy is the issue rather than power, what strategies are available to you?

If Energy is the issue rather than power, only reducing \(V_{dd} \), frequency outside critical path. Reducing power inside critical path simply increases time required not saving energy. Otherwise eliminate "wasted" toggles. Important when battery consumption is the driving requirement.