Logic Design – Final Thoughts

Dr. Paul D. Franzon

Outline
1. Reminder – transistor sizing basics
2. Logical Effort
3. LSDL

References
• Sutherland, Sproull, Harris, “Logical Effort”
Transistor Sizing

Key Steps:

- Simplify circuit as RC equivalent
- Consider RC delay from when transistor turns on
- Make sure to include any effects of delay opposing transistor turn-off

\[x, y \rightarrow 1,1 \]

\[x, y \rightarrow 0,1 \]
Logical Effort

Assuming an RC model, what is the delay of this gate?

\[\text{Delay} \propto R_1.C_{\text{inv}} + R_1.C_{\text{pinv}} \]

Cp-inv: Drain/Source parasitic

How does \(R_1.C_{\text{pinv}} \) vary with scale factor \(x \)?

How does \(R_1.C_{\text{inv}}^2 \) vary with \(x \) and \(y \)?

\[\text{Delay} \propto g.h + p \]

\[g = \text{“logical effort” (=1 for INV) (gate type)} \]
\[h = \text{“electrical effort” = y/x (transistor widths)} \]
\[p = \text{gate parasitic delay} \]
... Logical Effort

If drive gate is a NOR gate, how do you modify \(g \) so that \(h \) preserves its meaning on the previous page?

What transistor sizes would you have to make gate have same drive strength as INV?
 - See RHS

What is the ratio of \(\text{Cin} \text{(NOR)} \) to \(\text{Cin} \text{(INV)} \)?

How much would \(R_1 \) increase by to make \(\text{Cin} \text{(NOR)} = \text{Cin} \text{(INV)} \)?

What is \(g \) for a 2-input NOR gate?

\[
\text{Delay} \propto g.h + p
\]
Logical Effort

Values for g and typical values for p:

<table>
<thead>
<tr>
<th>g</th>
<th>2-input</th>
<th>3-input</th>
<th>4-input</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND</td>
<td>4/3</td>
<td>5/3</td>
<td>6/3</td>
<td>npinv</td>
</tr>
<tr>
<td>NOR</td>
<td>5/3</td>
<td>7/3</td>
<td>9/3</td>
<td>npinv</td>
</tr>
<tr>
<td>MUX</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2npinv</td>
</tr>
<tr>
<td>XOR</td>
<td>4</td>
<td>12</td>
<td>32</td>
<td>4npinv</td>
</tr>
</tbody>
</table>

Gate Delay

\[d = (gh + p) \tau \]

\[f = gh \text{ called } \textit{effort delay of gate} \]
Logical Effort for Multistage Logic

Path Effort

\[F = GBH \]
\[G = \Pi g_i \text{ for gates along the path} \]
\[H = \text{Cout}/\text{Cin} \text{ for path Out & In} \]
\[B = \Pi b_i \text{ for nodes along path (accounts for fanout)} \]
\[b_i = \text{Cotal}/\text{Con-path at each node in path} \]

The path delay for an N-stage network is least when the path delay for each stage is the same. i.e. when \(f = F^{1/N} \) or slightly larger
(For proof see Sutherland, but consider case of ratioed buffer chain)
Then for each stage the optimum electrical effort is \(h = F^{1/N}/g \)

Delay Effort

\[D = \Sigma g_i h_i + \Sigma p_i \]
Consider alternatives:

A:

\[
\begin{align*}
g &= 2 \\
p &= 4 \\
b &= 1 \\
G &= 3.33
\end{align*}
\]

B:

\[
\begin{align*}
g &= \frac{5}{3} \\
p &= 2 \\
b &= 1 \\
G &= 2.96
\end{align*}
\]

Optimum Delay when \(f = (GBH)^{1/N} \)

A: Optimum Delay \(D = 2 \left(\frac{3.33H}{2} \right)^{1/2} + 6 \)

B: Optimum Delay \(D = 4 \left(\frac{2.96H}{4} \right)^{1/4} + 7 \)

e.g. \(H = 1 \):

Case A delay = 9.6

Case B delay = 12.7

e.g. \(H = 12 \):

Case A delay = 18.6

Case B delay = 16.8
Example

Gate Sizing

H = 12 case

If Cin = 4

then Cout = H Cin = 48

Optimal Stage Effort = \(F^{1/4} = (2.96H)^{1/4} = 2.44 \)

Each stage \(h = \frac{Cout}{Cin} = \frac{F^{1/N}}{g} \)

\(\Rightarrow Cin = Cout g / (F^{1/N}) \)

INV: \(Cin = 48 / 2.44 = 19.66 \)

Next NAND: \(Cin = 19.66 \times (4/3) / 2.44 = 10.73 \)

Etc. Decides relative gate sizes