Static Combinational Circuits

Dr. Paul D. Franzon
Outline

1. CMOS Inverter
 - DC and AC characteristics

2. Static logic gates
 - Structure
 - Relative transistor sizing
 - Multi-Vt circuits

3. Differential Cascode Voltage Switch (DCVS) Logic
 - Structure
 - Transistor Sizing

4. Pass Gate Logic
 - Structures & Alternatives
 - Transistor Sizing

References:
Dally & Poulton, Chapters 4, 12.1
Basic CMOS Circuit Analysis

Core Principle:

Analysis of any digital circuit usually revolves around determining the transistor states for each region of operation.

<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
<th>Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{GS}</td>
<td><</td>
</tr>
<tr>
<td>$</td>
<td>V_{GS}-V_T</td>
<td>> V_{DS} \geq 0$</td>
</tr>
<tr>
<td>$V_{DS} \geq</td>
<td>V_{GS}-V_T</td>
<td>\geq 0$</td>
</tr>
</tbody>
</table>

Source of “majority carriers”
(e- in nmos case, p+ in pmos)
CMOS Inverter

Static CMOS Inverter:

- Transfer Characteristic:

1. $Vin = 0$, $Vout = Vdd$
 - N: $V_{GS}=0$, $V_{DS}=3.3$, $|V_{GS}| < |V_T|$: Off
 - P: $V_{GS}=3.3$, $V_{DS}=0$, $|V_{GS}-V_T| > V_{DS}$: LINEAR

2. $Vin > |V_T|$
 - N: $V_{GS} \approx 1$, $V_{DS} \approx 3$, $V_{DS} \geq |V_{GS}-V_T|$: SATN
 - P: $V_{GS} \approx 3$, $V_{DS} \approx 0.3$, $|V_{GS}-V_T| > V_{DS}$: LINEAR

3. $Vin \sim Vout$
 - N: $V_{GS} \approx 1.6$, $V_{DS} \approx 1.6$, $V_{DS} \geq |V_{GS}-V_T|$: SATN
 - P: $V_{GS} \approx 1.6$, $V_{DS} \approx 1.6$, $V_{DS} \geq |V_{GS}-V_T|$: SATN

4. N: LINEAR; P: SATN
5. N: LINEAR; P: OFF

To simplify, use $V_{dd}=3.3$ V
$|V_T| = 0.5$ V in examples

$V_{DD}+V_{tp}$ V_{tn} V_{tn} V_{tn} V_{tn}

V_{dd} V_{dd} V_{dd} V_{dd} V_{dd}

3: High Gain Region

Gain = $\frac{4}{((V_{GS}-V_T)(\lambda_p+\lambda_n))}$
CMOS Inverter

"Trip" Voltage

- where Vout = 0.5 VDD
 - Both nFET and pFET in saturation

\[I_{DSn} = -I_{DSP} \]

\[\frac{\beta_n}{2} (V_{in} - V_{Tn})^2 = -\frac{\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2 \]

\[Vin = \frac{V_{DD} + V_{tp} + V_{in} \sqrt{\beta_n / \beta_p}}{1 + \sqrt{\beta_n / \beta_p}} \]

- If \(\beta_n = \beta_p \) and \(V_{tn} = -V_{tp} \), \(Vin = VDD/2 \) \(\text{(1.65 V with parameters on prev. page)} \)

- What if \(k_n = 2k_p \), \(W_n/L_n = W_p/L_p \), \(VDD = 3.3 \), \(V_{tn} = -V_{tp} = 0.5 \)?
CMOS Inverter

Trip voltage moves with W/L

• Would you expect VIL, etc. to move with W/L?

How would you design an inverting receiver where input high noise and low noise have approx. equal magnitudes?
Shifting Trip Voltage V_{th}

Complete:

$V_{DD} = 5 \text{ V}$

$V_{T0,n} = 1.0 \text{ V}$

$V_{T0,p} = -1.0 \text{ V}$

$k_R = 0.25$

$k_R = 1.0$

$k_R = 4.0$

$k_R = \frac{k_n}{k_p}$

Figure 5.24 Voltage transfer characteristics of three CMOS inverters, with different nMOS-to-pMOS ratios.

©2006, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/pault.html
Transient (Step) Response

Idealized Input: Unit step

Equivalent Circuit:

- $V_o \geq V_{DD} - V_{tn}$
- $t = 0$
- $V_o < V_{DD} - V_{tn}$

90% - 10% Fall Time

$$C_L \frac{dV_o}{dt} + I_{DS} = 0$$

$$t_f = C_L \int_{V_{DD} - V_{tn}}^{0.9V_{DD}} I_{DS(satn)}dV_o + \int_{0.9V_{DD}}^{V_{DD} - V_{in}} I_{DS(linear)}dV_o$$

$$t_f \approx 4 \frac{C_L}{\beta_n V_{DD}}$$
Constant Current Approximation

Actual Input: Ramp
Step response vs. response to input with rise time = output fall time

\[\tau = \frac{V_{DD}C_L}{I_{DSS}} \]

(IDSS = Satn current)

See Poulton and Dally for “derivation”
Constant Current – Rise Time

Input rise time affects output delay:

\[
V_{\text{inv}} \quad T_{\text{PHL}} \approx \tau t^{0.5} \\
2r \tau \quad 2r \tau
\]

\[
V_{\text{inv}} \quad T_{\text{PHL}} \approx \tau (1-r)
\]

See text for derivation.
Inverter as Small Signal Amplifier

Can be used to restore small swing “logic” (e.g. input from lossy channel)

- Gain in high-gain region
 \[\text{Gain} = \frac{4}{(V_{GS}-V_T)(\lambda_p+\lambda_n)} \]
 About 20-40 practically
- Note: Miller effect increases apparent input capacitance in high gain region
- Frequency Response:
 - \[\frac{dv_{out}}{dt} = \frac{i}{C} = g_m \frac{v_{in}}{C} = \frac{I_{DSS}}{V_{DD}} \frac{v_{in}}{C} \]
 - Sinusoid: \(v_{out} = \sin \omega t = A v_{in} \)
 \[\frac{dv_{out}}{dt} = \omega \sin \omega t \]
 \[\text{When } A=1 : \omega_1 = \frac{I_{DSS}}{V_{DD}} C = \frac{1}{\tau} \]
 \[\text{i.e. } f_1 = \frac{1}{2\pi \tau} \]

\(f_1 \) called Gain-Bandwidth Product
Miller Effect Capacitance

Affects capacitance seen by small-signal equivalent circuit.

Miller’s Theorem:

Series capacitance in gain ckt:

\[
\text{Vin} \quad C_m \quad \text{Vout} = AVin
\]

Can be transformed to the following equivalent circuit:

\[
\text{Vin} \quad (1-A)C_m \quad \text{Vout} = AVin
\]

\(A \) is \(-ve\) ➔ Cin increases a lot in high gain region (at Vinv)

➔ Zin = \(1/j\omega Cin\) changes a lot in this region

Matters when constant known Zin matters
Static Logic Gates

Complementary pull-down and pull-up circuits

Analysis & Design Issues

- Body Effect changing Vtn for upper pull-up
- Transistor sizing:
 - Can speed up one path over another. (Note: Body effect on P2)
 - E.g. If path through ‘x’ is more critical, increase those transistors sizes.
 - If ‘y’ had to be faster (input arrived later in clock cycle) would it make sense to swap y with x?
Classic CMOS Gate

DC transfer characteristics

Reasoning:

\[kn = 2kp \]

\[\beta_{\text{pullup}} \propto kn; \quad \beta_{\text{pulldown}} \propto kn/2 \]
Transistor Sizing in Pull Down Logic

Want graded sizing for fastest transient operation:

\[
\text{Delay } \propto R3 (C1 + C2 + C3) + R2 (C1 + C2) + R1 C1
\]
Classic Static CMOS

NAND gate:

\[f \propto \frac{kn}{2} \]

To equalize delays:

\[p_1 \quad p_2 \]

\[n_1 \quad n_2 \]

\[x \quad y \]

\[\beta_{\text{eff}} \propto \frac{kn}{2} \]

Higher CL (S of \(y \) nfet, D of \(x \)) reduced by body effect (\(f < 1 \))
Static CMOS Logic

Advantages:
- Low power
 - Only leakage when not switching
- High Noise Tolerance
- No clock needed
- Good target for automatic synthesis

Disadvantages:
- High fan-out load (lower speed)
 - pFET and nFET loads
- High noise generation (crowbar currents and I_{noise} = C_{load} \frac{dv}{dt})
- Delay scales poorly with logical width
 - E.g. Multi-bit OR & NOR (e.g. zero detect circuit) much slower in Static CMOS than in domino logic

= Slow
Static CMOS Logic

Main Uses:

- Automatic synthesis
- Random logic with low logic widths
- Logic or buffers with large loads
 - Ratio drivers
 - Not as much need to upsize pFETs to get equal rise and fall delays
 - Easier to drive large loads in Static CMOS than other styles
 - Can have logic in earlier stages

![Diagrams showing logic levels](image)
Reducing Power Consumption

1. Reduce Vdd
 - Energy per switching event $\propto Vdd^2$
 - Gate delay $\propto Idss = \beta(Vdd-VT)^2$
 - I.e. $\propto Vdd^2$
 - Power \propto energy * fclock $\sim Vdd^4$
 - Tradeoffs Power with Delay:
 - Halve Vdd \Rightarrow Quarter speed, one-Sixteenth the power
 - (until Vdd starts approaching 2 VT, at which delay goes up rapidly)
 - Only suited when speed penalty acceptable
 - Why not just drop VT?

[Graph: Energy-Delay Product as a Function of Supply Voltage]
Reducing Power Consumption

2. Variable Threshold Design
 2.A. By Adjusting Body Voltage
 \[\text{VBp} = \text{Vdd (active)} \]
 \[= 2 \times \text{Vdd (standby)} \]
 \[\text{VBn} = \text{GND (active)} \]
 \[= -\text{Vdd (standby)} \]

2.B. By using a multi-Vt process

High-Vt transistors at top and bottom block sub-threshold leakage path during standby operation
Biasing V_{BS} shifts device V_T higher (for reverse bias) or lower (for forward bias). Here, 4V reverse bias yields 800mV higher NMOS V_T.

Forward bias (FB) increases subthreshold current due to junction leakage.

Interesting note – PMOS reverse bias (RB) V_T shift is limited for some reason, saturates at 300mV shift at 1.5V FB – impacts ability to use PMOS V_{BS} to modify circuit properties.
New LOGIC transistor design with dynamic body contact enabled by pulling source/drain dopant across the gate poly extensions, creating two parasitic FETs between the drain and body contacts. Body V_B determined by gate and drain voltage. All transistors are effectively “edgeless”, and the new transistor layout area is identical to the baseline transistor.
Low Power Digital

Minimize Energy·Delay product requires:

- Fast transitions (low Vt)
- Low leakage power (high Vt)

Electrical Results - Pass Gate Chain Delay vs. V$_{DD}$

25% savings in energy·delay

Damiano, Franzon
DCVS Logic

Differential Cascode Voltage Switch Logic

- pFETs form differential evaluate tree – half-latch pull-ups

\[
k_n = 2k_p
\]

Assume \(w = 1 \) initially

Assume \(A', B' \) fall symmetrically with \(A, B \)

\(f \) falls, turning \(p_1 \) on

\(t_f \propto 2k_n \)

\(t_r \propto k_n / 2 \)
DCVS Logic

Advantages:
- Low fanout load
 - Faster speed, and lower $I_{\text{noise}} = C \frac{dV}{dt}$
 - Good noise immunity (hysteris in latch, static)
 - No clocks
- Implicit inverse available (can save logic)
- Can have better logic density

Disadvantages:
- pFET fights pull-down chain
 - Higher crowbar current
- Higher device count in some applications

Found to be particularly useful in ECC applications that benefit from rich XOR, XNOR trees

High-speed on-chip ECC for synergistic fault-tolerance memory chips
Fifield, J.A.; Stapper, C.H.;
Solid-State Circuits, IEEE Journal of
DCVS logic

Transistor Size tradeoffs:

- In general:
 - Want $W_n \geq W_p$, so can overcome pFETs
- $(A,B) : (1,0) \rightarrow (1,1)$ or $(0,0) \rightarrow (1,1)$
 - Want $W_{n2} > W_{n1}$ so $n2$ can discharge CL @ f' quickly
- $(A,B) : (1,1) \rightarrow (1,0)$
 - $p1$ has higher CL to charge (source of $n1$, drain of $n2$)
 - Try to turn $p1$ on quicker by turning $n4$ on quicker
 - $W_{n4} > W_{n3}$?
- Have to balance against CL on previous stage
Transmission Gates

Pass Gates:

• What is the limitation of an n-type pass gate?

\[X = VDD \]

• Fix with a transmission gate:

Use for:
• Logic, esp. muxes
• Bi-directional structures
 • E.g. Segmented buses
Pass Gate Logic

Multiplexor:

What does the following do?

When is the only time you would use it?

Only when a high impedance connection is desired. e.g. shared busses. Accidental high impedance connections can lead to floating nodes and logic errors.
Delay in Pass Logic

Regions of operation:

<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{GS}</td>
</tr>
<tr>
<td>(</td>
<td>V_{GS}-V_T</td>
</tr>
<tr>
<td>(V_{DS} \geq</td>
<td>V_{GS}-V_T</td>
</tr>
</tbody>
</table>

RC delay model appropriate
Complementary Pass Logic

Concept:

- Save area on Transmission Gate or other fully complementary style by using an nMOS pass gate instead of Transmission Gate
 - Restore using an inverter
 - Prefer low-Vt nMOS transistors
 - Compromises noise margin

\[f = (A \cdot B)' \]

Note: \(f \) and \(f' \) are fully specified for all values of \(A, B \) (i.e., inverter input never floating.)
DCVS with Pass Gate

Advantages
- Speed, power
- Does not have pFET sensitivity of DCVS
 - PG logic pulls UP as well as down
- Reduced device count
- Good noise immunity

Disadvantages
- Body Effect
- Limited fan-in
- Limited load drive
DPL

Double Pass Transistor Logic

- Provides improved noise margin through incorporation of pFETs

![Diagram of XOR using high-performance DPL](image-url)
Swing Restored Pass Gate Logic

Add pull-downs
- Creates cross-coupled latch

Advantages:
- Improves noise tolerance
- Improves speed due to latch amplifier

Disadvantages
- Cross-over current
- Limited output drive (still)
Energy-Economized Pass Transistor Logic (EEPL)

Operation:
(B=1)

Initially
- \(I_1 \) high, \(I_2 \) low (\(p_1 \) off, \(p_2 \) on)
- \(A \rightarrow 0 \)
- \(A \) pulls \(I_1 \) low \(\rightarrow \) \(p_1 \) on; \(p_4 \) on; \(f' \rightarrow \) high
- \(A' \) pulls \(I_2 \) to \(Vdd-Vt \) \(\rightarrow \) \(p_2 \) OFF; \(n_6 \) on; \(f \rightarrow \) low
- \(I_2 \) eventually pulled to \(Vdd \) via \(p_1 \) after \(f' \) high

\(p_1, p_2 \) prevent cross-over current, reducing power consumption
Complementary Pass Gate Logic

Advantages:
- High speed
- Low power
- Esp. In low-Vt process

Disadvantages
- Body effect
- Limited fan-in
- Reduced noise margin

Main Uses:
- Usually faster Muxes, byte aligners, barrel shifters than other logic styles
- Low-power arithmetic circuits
... CPL

<table>
<thead>
<tr>
<th>Parameters (Vdd=3.3 V)</th>
<th>Static</th>
<th>CPL</th>
<th>DPL</th>
<th>Dual Rail Domino</th>
<th>Single Rail Domino</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power @ 100 MHz</td>
<td>34.3</td>
<td>34.5</td>
<td>27.5</td>
<td>82.5</td>
<td>60.2</td>
<td>mW</td>
</tr>
<tr>
<td>percentage</td>
<td>125</td>
<td>125</td>
<td>100</td>
<td>300</td>
<td>219</td>
<td>%</td>
</tr>
<tr>
<td>Delay of critical path</td>
<td>2.33</td>
<td>2.24</td>
<td>1.98</td>
<td>1.78</td>
<td>1.64</td>
<td>ns</td>
</tr>
<tr>
<td>Percentage</td>
<td>142</td>
<td>137</td>
<td>121</td>
<td>109</td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>Energy @ 100 MHz</td>
<td>79.9</td>
<td>77.3</td>
<td>54.5</td>
<td>146.9</td>
<td>98.7</td>
<td>pJ</td>
</tr>
<tr>
<td>Percentage</td>
<td>147</td>
<td>142</td>
<td>100</td>
<td>270</td>
<td>181</td>
<td>%</td>
</tr>
<tr>
<td>Area: pMOSFET width</td>
<td>17700</td>
<td>8295.6</td>
<td>11935.5</td>
<td>14716.4</td>
<td>12064.4</td>
<td>μm</td>
</tr>
<tr>
<td>nMOSFET width</td>
<td>9655</td>
<td>9141.5</td>
<td>7181</td>
<td>17728</td>
<td>14862</td>
<td>μm</td>
</tr>
<tr>
<td>total tr. width</td>
<td>27355</td>
<td>17437.1</td>
<td>19116.5</td>
<td>32444.4</td>
<td>26926.4</td>
<td>μm</td>
</tr>
<tr>
<td>Percentage</td>
<td>157</td>
<td>100</td>
<td>110</td>
<td>186</td>
<td>154</td>
<td>%</td>
</tr>
</tbody>
</table>

Low-power design techniques for high-performance CMOS adders
Uming Ko; Balsara, T.; Wai Lee;
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
Volume 3, Issue 2, June 1995 Page(s):327 - 333
Summary

What 2 performance figures does the saturated DS current, IDSS, of a transistor determine?

In a gate pull down chain, how might the transistors be sized?

\[A \uparrow \quad n_1 \quad \downarrow \quad B \]

\[B \uparrow \quad n_2 \quad \downarrow \]

How are multi-Vt processes used?
Summary

What is the main potential advantage of DCVS?

What is the main potential advantage of Pass Transistor Logic?