Static Combinational Circuits

Dr. Paul D. Franzon

Outline

1. CMOS Inverter
 • DC and AC characteristics
2. Static logic gates
 • Structure
 • Relative transistor sizing
 • Multi-Vt circuits
3. Differential Cascode Voltage Switch (DCVS) Logic
 • Structure
 • Transistor Sizing
4. Pass Gate Logic
 • Structures & Alternatives
 • Transistor Sizing

References:
 Dally & Poulton, Chapters 4, 12.1
Basic CMOS Circuit Analysis

Core Principle:

Analysis of any digital circuit usually revolves around determining the transistor states for each region of operation.

Basic Approach:
1. Estimate states or voltages
2. Calculate voltages or states
3. Make sure self-consistent

<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
<th>Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{GS}</td>
<td><</td>
</tr>
<tr>
<td>$</td>
<td>V_{GS}-V_T</td>
<td>> V_{DS} \geq 0$</td>
</tr>
<tr>
<td>$V_{DS} \geq</td>
<td>V_{GS}-V_T</td>
<td>\geq 0$</td>
</tr>
</tbody>
</table>

$G \rightarrow \text{Source of “majority carriers”}$

e^{-} in nmos case, p^{+} in pmos

CMOS Inverter

Static CMOS Inverter:

- Transfer Characteristic:

1: $V_{in} = 0$, $V_{out} = V_{dd}$
 - N: V_{GS}=0, V_{DS}= 3.3, $|V_{GS}| < |V_T|$: Off
 - P: V_{GS}=3.3, V_{DS}=0, $V_{GS}-V_T| > V_{DS}$: LINEAR

2: $V_{in} > |V_T|$ | $|V_{GS}| < |V_T|$ |
 - N: V_{GS}=1, V_{DS}=3, $V_{DS} \geq |V_{GS}-V_T|$: SATN
 - P: V_{GS}=3, V_{DS}=0, $V_{GS}-V_T| > V_{DS}$: LINEAR

3: $V_{in} \sim V_{out}$
 - N: V_{GS}=1.6, V_{DS}=1.6, $V_{DS} \geq |V_{GS}-V_T|$: SATN
 - P: V_{GS}=1.6, V_{DS}=0.3, $V_{GS}-V_T| > V_{DS}$: LINEAR

3: High Gain Region

Gain = $\frac{4}{(V_{GS}-V_T)(\lambda_p + \lambda_n)}$

To simplify, use V_{dd}=3.3 V

| VT | = 0.5 V in examples

©2006, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html
CMOS Inverter

“Trip” Voltage
- where Vout = 0.5 VDD
 - Both nFET and pFET in saturation
 \[I_{DSn} = -I_{DSP} \]
 \[\frac{\beta_n}{2} (V_{in} - V_{Tn})^2 = -\frac{\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2 \]
 \[V_{in} = \frac{V_{DD} + V_{ppp} + V_{in} \sqrt{\beta_n / \beta_p}}{1 + \sqrt{\beta_n / \beta_p}} \]
- If \(\beta_n = \beta_p \) and \(V_{tn} = -V_{tp} \), \(V_{in} = VDD/2 \)
 \((1.65 \text{ V with parameters on prev. page}) \)
- What if \(\beta_n = 2 \beta_p \), \(W_n/L_n = W_p/L_p \), \(VDD = 3.3 \), \(V_{tn} = -V_{tp} = 0.5 \)?

Trip Voltage changes with \(\beta \) and \(V_t \)
- Esp. W/L

CMOS Inverter

Trip voltage moves with W/L
- Would you expect VIL, etc. to move with W/L?

How would you design an inverting receiver where input high noise and low noise have approx. equal magnitudes?
Shifting Trip Voltage Vth

Complete:

$$k_R = \frac{k_n}{k_p}$$

Transient (Step) Response

Idealized Input: Unit step

- **Linear Discharge:** $V_o \geq V_{DD} - V_{th}$
- **Exponential:** $V_o < V_{DD} - V_{th}$

Equivalent Circuit:

- **90% - 10% Fall Time**

$$\tau_f \approx 4 \frac{C_s}{\beta V_{DD}}$$
Constant Current Approximation

Actual Input: Ramp

Step response vs. response to input with rise time = output fall time

\[\tau = \frac{V_{DD} C}{I_{DSS}} \]

(IDSS = Satn current)

See Poulton and Dally for “derivation”

Constant Current – Rise Time

Input rise time affects output delay:

\[TPHL \approx \tau \]

\[TPHL \approx \tau^{0.5} \]

\[TPHL \approx \tau(1-r) \]

See text for derivation.
Inverter as Small Signal Amplifier

Can be used to restore small swing “logic” (e.g. input from lossy channel)

- Gain in high-gain region
 \[\text{Gain} = \frac{4}{(V_{GS} - V_T)(\lambda_p + \lambda_n)} \]
 About 20-40 practically

- Note: Miller effect increases apparent input capacitance in high gain region

- Frequency Response:
 \[\frac{dv_{\text{out}}}{dt} = \frac{i}{C} = \frac{g_m v_{\text{in}}}{C} = \frac{I_{\text{DSS}}}{V_{DD}} \frac{v_{\text{in}}}{C} \]

- Sinusoid: \[v_{\text{out}} = \sin \omega t = A v_{\text{in}} \]
 \[\Rightarrow \frac{dv_{\text{out}}}{dt} = \omega \sin \omega t \]
 \[\Rightarrow \text{When } A=1: \quad \omega = \frac{I_{\text{DSS}}}{V_{DD}C} = \frac{1}{\tau} \]
 \[\Rightarrow f_1 = \frac{1}{2\pi \tau} \]

- \(f_1 \) called Gain-Bandwidth Product

Miller Effect Capacitance

Affects capacitance seen by small-signal equivalent circuit.

Miller’s Theorem:

Series capacitance in gain ckt:

\[\text{Can be transformed to the following equivalent circuit:} \]

\[A \text{ is } -\text{ve} \Rightarrow \text{Cin increases a lot in high gain region (at Vinv)} \]

\[\Rightarrow Z_{\text{in}} = \frac{1}{j\omega \text{Cin}} \text{ changes a lot in this region} \]

\[\Rightarrow \text{Matters when constant known Zin matters} \]
Static Logic Gates

Complementary pull-down and pull-up circuits

Analysis & Design Issues
- Body Effect changing Vtn for upper pull-up
- Transistor sizing:
 - Can speed up one path over another. (Note: Body effect on P2)
 - E.g. If path through ‘x’ is more critical, increase those transistors sizes.
 - If ‘y’ had to be faster (input arrived later in clock cycle) would it make sense to swap y with x?

Classic CMOS Gate

DC transfer characteristics

Reasoning:
Transistor Sizing in Pull Down Logic

Want graded sizing for fastest transient operation:

\[
\text{Delay} \propto R_3 (C_1 + C_2 + C_3) + R_2 (C_1 + C_2) + R_1 C_1
\]

Classic Static CMOS

NAND gate:

\[k_{n} = 2k_{p} \]

To equalize delays:

\[n_1, n_2 \text{ (} n_2 > n_1 \text{)} \]

\[p_1 \text{ (} p_2 > p_1 \text{)} \]

Possible Solution underlined
Static CMOS Logic

Advantages:

- Low power
 - Only leakage when not switching
- High Noise Tolerance
- No clock needed
- Good target for automatic synthesis

Disadvantages:

- High fan-out load (lower speed)
 - pFET and nFET loads
- High noise generation (crowbar currents and \(I_{\text{noise}} = C \frac{dv}{dt} \))
- Delay scales poorly with logical width
 - E.g. Multi-bit OR & NOR (e.g. zero detect circuit) much slower in Static CMOS than in domino logic

Main Uses:

- Automatic synthesis
- Random logic with low logic widths
- Logic or buffers with large loads
 - Ratio drivers
 - Not as much need to upsize pFETs to get equal rise and fall delays
 - Easier to drive large loads in Static CMOS than other styles
 - Can have logic in earlier stages
Reducing Power Consumption

1. Reduce Vdd
 - Energy per switching event $\propto Vdd^2$
 - Gate delay $\propto I_{dss} = \beta(Vdd-VT)^2$
 - i.e. $\propto Vdd^2$
 - Power \propto energy * fclock $\sim Vdd^4$
 - Tradeoffs Power with Delay:
 - Halve Vdd \Rightarrow Quarter speed, one-Sixteenth the power
 - (until Vdd starts approaching 2 VT, at which delay goes up rapidly)
 - Only suited when speed penalty acceptable
 - Why not just drop VT?

2. Variable Threshold Design
 2.A. By Adjusting Body Voltage
 2.B. By using a multi-Vt process

 High-Vt transistors at top and bottom block sub-threshold leakage path during standby operation
IMPACT OF BODY BIAS

Biasing V_{BS} shifts device V_T higher (for reverse bias) or lower (for forward bias). Here, 4V reverse bias yields 800mV higher NMOS V_T.

Forward bias (FB) increases subthreshold current due to junction leakage.

Interesting note – PMOS reverse bias (RB) V_T shift is limited for some reason, saturates at 300mV shift at 1.5V FB – impacts ability to use PMOS V_{BS} to modify circuit properties.

New LOGIC transistor design with dynamic body contact enabled by pulling source/drain dopant across the gate poly extensions, creating two parasitic FETs between the drain and body contacts. Body V_B determined by gate and drain voltage. All transistors are effectively “edgeless”, and the new transistor layout area is identical to the baseline transistor.
Low Power Digital

Minimize Energy.Delay product requires:
- Fast transitions (low Vt)
- Low leakage power (high Vt)

DCVS Logic

Differential Cascode Voltage Switch Logic
- pFETs form differential evaluate tree - half-latch pull-ups

- f falls, turning p_1 on
- $t_f \propto 2k_n$
- $t_{r} \propto k_n/2$

\[kn = 2kp \]

Assume $w=1$ initially
Assume A' B' fall symmetrically with A, B
DCVS Logic

Advantages:
- Low fanout load
 - Faster speed, and lower Inoise=Cdv/dt
 - Good noise immunity (hysteris in latch, static)
 - No clocks
- Implicit inverse available (can save logic)
- Can have better logic density

Disadvantages:
- pFET fights pull-down chain
 - Higher crowbar current
- Higher device count in some applications

Found to be particularly useful in ECC applications that benefit from rich XOR, XNOR trees

Transistor Size tradeoffs:
- In general:
 - Want Wn ≥ Wp, so can overcome pFETs
 - (A,B) : (1,0) → (1,1) or (0,0) → (1,1)
 - Want Wn2 > Wn1 so n2 can discharge CL @ f quickly
 - (A,B) : (1,1) → (1,0)
 - p1 has higher CL to charge (source of n1, drain of n2)
 - Try to turn p1 on quicker by turning n4 on quicker
 - Wn4 > Wn3?
- Have to balance against CL on previous stage

High-speed on-chip ECC for synergistic fault-tolerance memory chips
Fife, J.A.; Slappey, C.H.;
Solid-State Circuits, IEEE Journal of
Transmission Gates

Pass Gates:
- What is the limitation of an n-type pass gate?

\[X = V_{DD} \]

- Fix with a transmission gate:

Use for:
- Logic, esp. muxes
- Bi-directional structures
 - E.g. Segmented buses

Pass Gate Logic

Multiplexor:

What does the following do?

When is the only time you would use it?
Delay in Pass Logic

Regions of operation:

- **Vin=Vdd Out=0**
- **Vin=Vdd-Out=Vdd-Vtn**
- **Vin=Vtp-Out=Vdd**

<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{GS}</td>
</tr>
<tr>
<td>(</td>
<td>V_{GS}-V_T</td>
</tr>
<tr>
<td>(V_{DS} \leq</td>
<td>V_{GS}-V_T</td>
</tr>
</tbody>
</table>

RC delay model appropriate

Complementary Pass Logic

Concept:
- Save area on Transmission Gate or other fully complementary style by using an nMOS pass gate instead of Transmission Gate
 - Restore using an inverter
 - Prefer low-Vt nMOS transistors
 - Compromises noise margin

\[
\begin{align*}
f & = (A \cdot B)'
\end{align*}
\]
DCVS with Pass Gate

Advantages
- Speed, power
- Does not have pFET sensitivity of DCVS
 - PG logic pulls UP as well as down
- Reduced device count
- Good noise immunity

Disadvantages
- Body Effect
- Limited fan-in
- Limited load drive

DPL

Double Pass Transistor Logic
- Provides improved noise margin through incorporation of pFETs
Swing Restored Pass Gate Logic

Add pull-downs
- Creates cross-coupled latch

Advantages:
- Improves noise tolerance
- Improves speed due to latch amplifier

Disadvantages
- Cross-over current
- Limited output drive (still)

Energy-Economized Pass Transistor Logic (EEPL)

Operation: \((B=1)\)

Initially
- \(\Pi\) high, \(I_2\) low (\(p_1\) off, \(p_2\) on)
- \(A \rightarrow 0\)
- \(A'\) pulls \(I_2\) to \(V_{dd}-V_t\) \(\rightarrow p_2\) OFF; \(n_6\) on; \(f \rightarrow low\)
- \(I_2\) eventually pulled to \(V_{dd}\) via \(p_1\) after \(f'\) high

\(p_1, p_2\) prevent cross-over current, reducing power consumption
Complementary Pass Gate Logic

Advantages:
- High speed
- Low power
- Esp. in low-Vt process

Disadvantages
- Body effect
- Limited fan-in
- Reduced noise margin

Main Uses:
- Usually faster Muxes, byte aligners, barrel shifters than other logic styles
- Low-power arithmetic circuits

\[f = \overline{(A \cdot B)} \]

\[S0 \quad S1 \]
\[D0 \quad D1 \]

CPL Mux

TABLE III

<table>
<thead>
<tr>
<th>Parameters (VDD=3.3 V)</th>
<th>Static</th>
<th>CPL</th>
<th>DPL</th>
<th>Dual Rail</th>
<th>Single Rail</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power @ 100 MHz</td>
<td>34.3</td>
<td>34.3</td>
<td>27.5</td>
<td>42.5</td>
<td>60.2</td>
<td>mW</td>
</tr>
<tr>
<td>Percentage</td>
<td>125</td>
<td>127</td>
<td>100</td>
<td>300</td>
<td>2.19</td>
<td>%</td>
</tr>
<tr>
<td>Delay of critical path</td>
<td>2.33</td>
<td>2.24</td>
<td>1.98</td>
<td>1.78</td>
<td>1.64</td>
<td>ns</td>
</tr>
<tr>
<td>Percentage</td>
<td>142</td>
<td>147</td>
<td>131</td>
<td>100</td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>Energy @ 100 MHz</td>
<td>19.9</td>
<td>17.3</td>
<td>14.5</td>
<td>146.9</td>
<td>91.7</td>
<td>pJ</td>
</tr>
<tr>
<td>Percentage</td>
<td>147</td>
<td>142</td>
<td>100</td>
<td>270</td>
<td>181</td>
<td>%</td>
</tr>
<tr>
<td>Active MOSFET width</td>
<td>17700</td>
<td>8235.6</td>
<td>11055.5</td>
<td>14516.4</td>
<td>12056.4</td>
<td>(\mu m)</td>
</tr>
<tr>
<td>nMOSFET width</td>
<td>9655</td>
<td>9141.5</td>
<td>7181</td>
<td>17728</td>
<td>14462</td>
<td>(\mu m)</td>
</tr>
<tr>
<td>total w. width</td>
<td>22235</td>
<td>17437.1</td>
<td>19316.5</td>
<td>32444.4</td>
<td>26926.4</td>
<td>(\mu m)</td>
</tr>
<tr>
<td>Percentage</td>
<td>157</td>
<td>100</td>
<td>110</td>
<td>186</td>
<td>154</td>
<td>%</td>
</tr>
</tbody>
</table>

Low-power design techniques for high-performance CMOS adders
Uming Ko; Bansara, T. Wai Lee.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
Volume 3, Issue 2, June 1995 Page(s):327 - 333
Summary

What 2 performance figures does the saturated DS current, IDSS, of a transistor determine?

In a gate pull down chain, how might the transistors be sized?

\[
\begin{array}{c}
A \\
\downarrow \\
\text{smaller}
\end{array}
\quad
\begin{array}{c}
B \\
\downarrow \\
\text{larger}
\end{array}
\]

How are multi-Vt processes used?

Reduced Fanout load
Reduced Capacitance/switched node
Lower power

What is the main potential advantage of DCVS?

What is the main potential advantage of Pass Transistor Logic?