4. *Dynamic Combinational Circuits*

Dr. Paul D. Franzon

Outline

1. Dynamic Gate Basics
2. Domino Logic Styles
3. Dual Rail Domino
4. Bootstrap circuit

References

- Dally & Poulton, Chapters 4, 12.1
- Kang and Leblici, Chapter 9
- Bernstein, Ch. 3
- Gu, Sharaf, et.al. Ch. 4
Objectives and Motivation

Objectives:

- Understand approach used in designing a variety of dynamic logic circuits
- Understand advantages and disadvantages of different topologies

Motivation

- Dynamic logic circuits are important for high speed design. This provides an in-depth treatment
Dynamic Logic Gates

Basic Dynamic NAND gate:
- Clock = Low : Precharge S
- Clock = High : Evaluate pull down chain
- Low CL ➔ Fast

Potential Problems
- Can this gate drive another similar gate?

©2011, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html
Dynamic Logic Gates

... Potential Problems:

- **Charge Sharing.** If A → 1 after clock goes Hi, while B is 0, then voltage at node S1 reduced.

- **Capacitive Coupling.** Even with A=B=0, parasitic noise coupled to node S1 or S2 can bring those nodes down. E.g. Crossing metal trace transitioning from 1- > 0

- **Charge Leakage.** If clock stops stored ‘1’ at S1, S2 will leak away

Solution?

Potential Problem:

- **Keeper:** Restores logic-1 while clock hi if A or B=0.

- **Inverter:** Ensures rising outputs only while clock hi

+ ensure A can only RISE After clock → 1
Better Dynamic Logic Gates

Solution:
- Disable keeper during evaluate
- Ensure inputs only RISE when clock=1 to prevent charge sharing

How to minimize Ithru?
Impact of W_p/W_n

- Large W_p/W_n → More susceptible to noise on S
- Large W_p/W_n → Out rises sooner and $p2$ turns off sooner
Other Solutions

Tradeoff area for better control of p2:

Keeper “pulsed” on - Not fighting Pull downs

BUT: Dynamic nodes still unprotected for part of clock cycle
Transistor Sizing in Dynamic Logic

Want graded sizing for fastest transient operation:

\[\text{Delay} \propto R3 (C1 + C2 + C3) + R2 (C1 + C2) + R1 C1 \]
Domino Logic

Satisfies requirement of rising inputs only

During evaluation A, C, E can only fall; B, D, F can only rise.

- Rules:
 - Previous stage can only drive top nFET in following stage
 - Pull-down clock nFETs can be eliminated in follow-on stages
Domino Logic

Transistor Size tradeoffs:

- **Keeper (p2)**
 - Wider (stronger) → better NMH at I1
 - Narrow (weaker) → faster + lower power
 - $W_{\text{keeper}} \sim W_N/4$ typical

- **Inverter (n4, p3)**
 - Larger → faster
 - $W_p > W_n$ → Increases NML @I1 → Better noise immunity at A inputs
 - Reduces time p2 on, and thus p2 load on n1-n3

- **Pull-down chain**
 - $W_n3 > W_n2 > W_n1$ to maximize t_{fall}

- **Precharge**
 - W_p1 determines pull-up time
Dual-Rail Domino

Many logic functions can not achieve glitch-free operation

- E.g. Arithmetic (consider carry chain)
- Solution: Dual-rail logic
 - Produce signal and signal’
- Actually:
 - Differential ckt with precharge added
 - Desire weak pfet pullups

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>x0</th>
<th>x1</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\[a = a_0 = a_1' \]
\[b = b_0 = b_1' \]
\[c = c_0' = c_1 \]
Operation

Draw Waveform:

- **Clock**
 - Waveform

- **a1 = a0’**
 - Waveform

- **b1 = b0’**
 - Waveform

- **x0**
 - Waveform

- **x1**
 - Waveform

- **c1 = c0’**
 - Values: 0 1 0

FIGURE 4-45. A Dynamic Dual-Rail XOR Gate
Dual Rail Domino

Size Tradeoffs:

- **Half-latch**
 - $f = (A \cdot B)$
 - $f' = A \cdot B$
 - B'

- **Precharge** (size → t_{rise})

- **Evaluate pFETs**
 - $W_n > W_p$ (fights half-latch)
 - W_n increases towards bottom

- **Note:** Might buffer f and f' with INV to increase noise tolerance

- **Largest PD transistor:** $A > B, B' > A'$

©2011, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html
Other Variations

Dynamic Logic can lead to high density implementations of complex functions:

E.g.

Compound Logic

Multiple Output
Domino Logic

Advantages:
- Lower Cloads \Rightarrow faster
- No crowbar current \Rightarrow faster, lower noise generation

Disadvantages:
- High clock power
- Careful timing design of clock
- Difficult to diagnose timing fault in chip
- Lower noise immunity
 - DC margins:
 - Clock noise $< |V_t|$ to prevent both p_1 and n_3 being on at same time
 - V_A and V_B must stay $< V_t$ for input-low
 - AC margins can be higher
- Subject to charge sharing
Summary

What is the main advantage of dynamic circuits?

What are some of the disadvantages?

What is dual-rail domino used for?