Outline

Circuits
- Goals
- Drivers
- Receivers
- On-chip parallel termination
- ESD protection
- On-chip interconnect circuits

References
- D&P, Ch. 11, 7, 8
Goals of Interconnect Circuits

- Achieve good BER under realistic noise conditions, with realistic clocks
- Low power consumption
- Control common mode noise
 - Especially di/dt noise (simultaneous switching noise [SSN])
 - Impacts bit errors in other circuits, as well as this circuit
- Protect chip against electrostatic discharge through pin

E.g. 4-pin TX circuit:
Drivers

Outline:

- Voltage mode drivers
 - Drive and pre-drive
 - Tri-state
 - Rise time control
 - Self-termination
 - Differential
- Current mode drivers
- Transmitter pre-emphasis
Voltage Mode Drivers

Basic Objectives:

- For $V_{swing} > 0.9 \, V_{dd}$, $R_{out} < 0.1 \, Z_0$
 - Large drive transistors
 - Pre-drive circuit needed
 - Remember ratio’d driver (see CMOS notes)
- Must avoid nFET and pFET being on at same time
 - Otherwise large short circuit current during transition
 - Break before Make circuit
- Reasonable area
- Small di/dt
 - Rise time control
Basic Voltage Drivers

Techniques to prevent short-circuit current:

NAND: $t_r > t_f$
NOR: $t_f > t_r$
Use rise, fall times to prevent I_{sc}
(beware of process spread)

<table>
<thead>
<tr>
<th>En</th>
<th>Data</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>:</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>:</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>:</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>:</td>
</tr>
</tbody>
</table>

Data

Out

"break nMOS"

"make pMOS"
... Voltage Drivers

Reduce tri-state driver:

Same functionality as previous page, with fewer transistors and break-before-make
Rise Time Control

Goal: Reduce di/dt without significant reduction in delay

- Typically $tr < 0.3 - 0.5 \ t_{bit}$
- Process, temperature variations \Rightarrow Active control might be desirable (e.g. Use nMOS as pFET and control “resistance”)
- First stage to switch usually the largest
Output Impedance Control

e.g. To precisely match line in series termination

- Digitally trimmed circuit
- NC1, NC2, PC1, PC2 produced by comparing copies of the drive FETs with an off-chip resistor (e.g. voltage division or a bridge)
Differential

Small Swing:

\[\text{in} \quad \text{Vbias} \quad \text{in}' \quad \text{out} \]

(Large Swing:

\[\text{out}' \quad \text{out} \quad \text{Tline} \]

\[\text{IN_POS} \quad \text{IN_NEG} \quad \text{ad} \quad \text{ad} \]

(Size for a small but finite \(R_{out} \))
Current Mode Drivers

Single sided:
- Relies on saturated FET

\[\text{In} \quad \longrightarrow \quad \text{Out} \]

Requires:
- \(\text{Vout} > \text{VDD-Vt} \)
- Digital trimming to provide \(I_{\text{out}} \) across process and temp spreads

Switched Current Mirror
- Series devices must be large
- Small \(VG \) on mirror to max \(V_{\text{sw}} \)

\[\text{In} \quad \longrightarrow \quad \text{Out} \quad \text{I}_{\text{ref}} \quad \frac{x}{kx} \quad \text{Out} \quad \text{I}_{\text{ref}} \]

Gated Current Mirror
- Smaller devices
- Slower transient response

\[\text{In} \quad \longrightarrow \quad \text{Out} \quad \text{I}_{\text{ref}} \quad \text{In} \quad \frac{x}{kx} \quad \text{Out} \quad \text{I}_{\text{ref}} \]
Differential Current Mode TX

Current Steering Circuits:
- Stage 1: Converts large swing to small swing
 - Eliminates dead band at ends of swing in stage 2
Bipolar Current Mode TX

Above Unipolar

- Levels: 0 and x mA

Create bipolar with complementary pull-up of above

- Logic levels = +/- x mA

Example:

![Bipolar Current Mode TX Diagram]
Rise Time Control

Can be achieved as per Voltage Mode TX

- Segment drive transistors connected to In (or g) and stagger their turn-on as before
Pre-Emphasis

Simple digital z-domain high pass filter

- Must ensure proper voltage swing

E.g. 2-tap FIR

\[H(z) = a_0 + a_1 z^{-1} \]

\[r = -\frac{a_1}{a_0} \]

\[H(z) = a_0(1-rz^{-1}) \]

\[H(w) = a_0(1-re^{jwt}) \]

\[|H(\omega)| = a_0(1+r^2-2r\cos(\omega t))^{0.5} \]

\[|H(\omega=0)| = a_0(1-r) = a_0 + a_1 \]

\[|H(\omega t=n\pi)| = a_0(1+r) = a_0 - a_1 \]

Boost = \(\frac{a_0-a_1}{a_0+a_1} = \frac{1+r}{1-r} \)

HPF if \(a_0 > 0 \), and \(a_1 < 0 \)
Current-Mode Pre-Emphasis Circuit

2-tap filter

Requirement
\[|a_0| + |a_1| \rightarrow I_{sw_{\text{max}}} \]
Voltage Mode Pre-emphasis

Tap weights effectively set by transistor sizes:
- a₁ tap smaller transistors than a₀ tap
Receivers:

- Basics on detection and sampling
- Inverters
- Differential
- Clocked differential receivers
 - Integrating
 - Matched filter
Detection & Sampling

Eye requirements at input to RX:

- To meet requirements to sample and amplify signal in presence of noise, timing skew and jitter

\[\text{skew+jitter} \]

\[\text{aperture time} = \text{t}_{\text{setup}} + \text{t}_{\text{hold}} - \text{t}_r \]

Why? \[\text{aperture time} = \text{t}_{\text{setup}} + \text{t}_{\text{hold}} - \text{t}_r \]

As \text{t}_\text{setup}, \text{t}_\text{hold} measured to 50% points, aperture at top & bottom of eye (at 10%, 90% points)
Detection & Sampling

Alternatives

- Separate amplifier + sampler (I.e. Flip-flop)
- Clocked amplifier (integrated)

- Advantages of clocked amplifier
 - Lower power
 - Jitter contribution of amplifier “portion” reduced
 - More sensitivity
 - Sampling rate not constrained by gain-bandwidth product
Static (separate) Amplifiers

Inverters

- Gain around $V_{inv} \approx \frac{4}{(V_{GS} - V_t)(\lambda_p + \lambda_n)}$
- Gain ≈ 20 for “book” 0.35 µm process
- \Rightarrow Sensitivity $\approx \frac{(V_{IH} - V_{IL})}{\text{Gain}} = \frac{2.5}{20} = 125 \text{ mV}$
- Offset determined variation in V_{inv} with process, temp and V_{dd} variations
 - About 300 mV for process variation
 - About 500 mV including temp & V_{dd} variation
- Not best used for initial gain stage in RX
- Useful for final gain stage, however

Inverter Variation

- Schmidt Trigger
 - Hysterisis \Rightarrow very wide NM
Static Differential Receivers

Advantages:
- More sensitive
 - Determined by g_m of source coupled pair and $R\Delta$ of load
 - 20 – 100 mV
- Less offset voltage
 - Determined by nFET, pFET mismatch
 - 10 mV
Self-Biased Differential RX

Self-biased (Chappell) Receiver

- Current source bias
 - Too high \rightarrow pull input devices out of saturation
 - Too low \rightarrow limits output swing
 - Self-bias against temp, process variation

Symetric Chappell Amplifier

High input range amp
Clocked Differential Amplifiers

See earlier section on differential flip-flops

Integrating Amplifier

- Integrator acts like a low-pass filter rejecting high frequency noise
Matched Filter Amplifier

Match bias current with shape of Vin

- Matched Filter
On-chip Termination

Binary-weighted trim resistors

- Set trim bits through comparison of a reference circuit with an off-chip resistor

![Diagram of binary-weighted trim resistors](image)