Outline

Circuits
 • Goals
 • Drivers
 • Receivers
 • On-chip parallel termination
 • ESD protection
 • On-chip interconnect circuits

References
 • D&P, Ch. 11, 7, 8
Goals of Interconnect Circuits

- Achieve good BER under realistic noise conditions, with realistic clocks
- Low power consumption
- Control common mode noise
 - Especially di/dt noise (simultaneous switching noise [SSN])
 - Impacts bit errors in other circuits, as well as this circuit
- Protect chip against electrostatic discharge through pin

E.g. 4-pin TX circuit:
Drivers

Outline:

- Voltage mode drivers
 - Drive and pre-drive
 - Tri-state
 - Rise time control
 - Self-termination
 - Differential
- Current mode drivers
- Transmitter pre-emphasis
Voltage Mode Drivers

Basic Objectives:

- For $V_{swing} > 0.9 \, V_{dd}$, $R_{out} < 0.1 \, Z_0$
 - \Rightarrow Large drive transistors
 - \Rightarrow Pre-drive circuit needed
 - Remember ratio’ed driver (see CMOS notes)
- Must avoid nFET and pFET being on at same time
 - Otherwise large short circuit current during transition
 - Break before Make circuit
- Reasonable area
- Small di/dt
 - Rise time control
Basic Voltage Drivers

Techniques to prevent short-circuit current:

```
ECE 733 Class Notes

Basic Voltage Drivers

NAND: tr > tf
NOR: tf > tr
Use rise, fall times to prevent Isc
(beware of process spread)

<table>
<thead>
<tr>
<th>En</th>
<th>Data</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

©2003, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html
... Voltage Drivers

Reduce tri-state driver:

Same functionality as previous page, with fewer transistors and break-before-make
Rise Time Control

Goal: Reduce $\frac{di}{dt}$ without significant reduction in delay

- Typically $tr < 0.3 - 0.5 \ t_{bit}$
- Process, temperature variations ➔ Active control might be desirable (e.g. Use nMOS as pFET and control “resistance”)
- First stage to switch usually the largest
Output Impedance Control

e.g. To precisely match line in series termination

- Digitally trimmed circuit
- NC1, NC2, PC1, PC2 produced by comparing copies of the drive FETs with an off-chip resistor (e.g. voltage division or a bridge)
Differential

Small Swing:

Large Swing:

(Size for a small but finite R_{out})
Current Mode Drivers

Single sided:
- Relies on saturated FET

![Single sided diagram]

Requires:
- \(V_{out} > V_{DD} - V_t \)
- Digital trimming to provide \(I_{out} \) across process and temp spreads

Switched Current Mirror
- Series devices must be large
- Small VG on mirror to max \(V_{sw} \)

Gated Current Mirror
- Smaller devices
- Slower transient response
Differential Current Mode TX

Current Steering Circuits:
- Stage 1: Converts large swing to small swing
 - Eliminates dead band at ends of swing in stage 2
Bipolar Current Mode TX

Above Unipolar
- Levels: 0 and \(x \) mA

Create bipolar with complementary pull-up of above
- Logic levels = +/- \(x \) mA

Example:

![Diagram of bipolar current mode TX](image-url)
Rise Time Control

Can be achieved as per Voltage Mode TX

- Segment drive transistors connected to In (or g) and stagger their turn-on as before
Pre-Emphasis

Simple digital z-domain high pass filter

- Must ensure proper voltage swing

E.g. 2-tap FIR

\[H(z) = a_0 + a_1 z^{-1} \]
\[r = -a_1 / a_0 \]
\[H(z) = a_0 (1 - rz^{-1}) \]
\[H(w) = a_0 (1 - re^{i\omega}) \]
\[|H(\omega)| = a_0 (1 + r^2 - 2r \cos(\omega t))^{0.5} \]
\[|H(\omega = 0)| = a_0 (1 - r) = a_0 + a_1 \]
\[|H(\omega t = \pi)| = a_0 (1 + r) = a_0 - a_1 \]
Boost = \((a_0 - a_1) / (a_0 + a_1) = (1 + r) / (1 - r) \)

HPF if \(a_0 > 0 \), and \(a_1 < 0 \)
Current-Mode Pre-Emphasis Circuit

2-tap filter

Requirement

\[|a_0| + |a_1| \rightarrow I_{sw_max} \]
Voltage Mode Pre-emphasis

Tap weights effectively set by transistor sizes:
- a_1 tap smaller transistors than a_0 tap
Receivers:

- Basics on detection and sampling
- Inverters
- Differential
- Clocked differential receivers
 - Integrating
 - Matched filter
Detection & Sampling

Eye requirements at input to RX:
- To meet requirements to sample and amplify signal in presence of noise, timing skew and jitter

\[\text{skew+jitter} \quad \text{aperture time} = t_{\text{setup}} + t_{\text{hold}} + t_r \]

Rx sensitivity

Why? aperture time\(= t_{\text{setup}} + t_{\text{hold}} + t_r \)

As \(t_{\text{setup}}, t_{\text{hold}}\) measured to 50\% points, aperture at top & bottom of eye (at 10\%, 90\% points)
Detection & Sampling

Alternatives

- Separate amplifier + sampler (i.e. Flip-flop)
- Clocked amplifier (integrated)

Advantages of clocked amplifier

- Lower power
- Jitter contribution of amplifier “portion” reduced
- More sensitivity
- Sampling rate not constrained by gain-bandwidth product
Static (separate) Amplifiers

Inverters
- Gain around $V_{in} = 4/((V_{GR}-V_n)(\lambda p+\lambda n))$
- Gain $= 20$ for “book” 0.35 µm process
- \Rightarrow Sensitivity $= (V_{IH}-V_{IL})/\text{Gain} = 2.5/20 = 125 \text{ mV}$
- Offset determined variation in V_{in} with process, temp and V_{dd} variations
 - About 300 mV for process variation
 - About 500 mV including temp & V_{dd} variation
- Not best used for initial gain stage in RX
- Useful for final gain stage, however

Inverter Variation
- Schmidt Trigger
 - Hysteresis \Rightarrow very wide NM

![Schmidt Trigger Diagram]
Static Differential Receivers

Advantages:

- More sensitive
 - Determined by g_m of source coupled pair and $R\Delta$ of load
 - $20 - 100$ mV
- Less offset voltage
 - Determined by nFET, pFET mismatch
 - 10 mV
Self-Biased Differential RX

Self-biased (Chappell) Receiver

- Current source bias
 - Too high → pull input devices out of saturation
 - Too low → limits output swing
 - Self-bias against temp, process variation

Symmetric Chappell Amplifier

High input range amp
Clocked Differential Amplifiers

See earlier section on differential flip-flops

Integrating Amplifier

- Integrator acts like a low-pass filter rejecting high frequency noise
Matched Filter Amplifier

Match bias current with shape of Vin

- Matched Filter
On-chip Termination

Binary-weighted trim resistors

- Set trim bits through comparison of a reference circuit with an off-chip resistor

![Diagram of binary-weighted trim resistors]