ESD Protection

Static electricity caused by human and machine handling of ICs

• Human body model:

 \[
 1000-5000 \text{ V} \quad 100\text{pF} \quad 1\text{pF} \quad 1.5k\Omega \quad 1\text{pF} \quad 10\text{pF}
 \]

• Effects of ESD

 • Breakdown of gate oxide (at $7 \times 10^8 \text{ V/m}$)

 ◆ “First breakdown” (not necessarily destructive)
 ◆ 4.9 V for 7 nm thick gate oxide
 ◆ 350 V for 0.5 µm thick field oxide

 • Thermal runaway due to high IDS

 ◆ “second breakdown” (destructive)

 • Avalanche and Zener breakdown in parasitic diode
ESD Protection Circuits

Overall structure

Primary shunt (to ESD “supply”)

- Primary shunt
 - Goal: to drain current to neighboring input pad through ESD supply
 - Use parasitic diode, FET (using field oxide) or transistor
- R: Low-pass filter. Can be an L, at expense of increased area
 - Use poly or diffusion resistor
- Secondary shunt
 - Goal: Voltage clamping: diode-connected nFET

- Note: Adds ~1 pF of capacitance to input
On-chip Interconnect

Distributed RC lines

\[\text{trise} \approx 2.2 \text{Rout} (\text{Cout} + \text{Cwire} + \text{CL}) + 0.9 \text{Rwire} \text{Cwire} + 2.2 \text{Rwire} \text{CL} \]

\[T_{\text{delay}} \approx 0.7 \text{Rout}(\text{Cout} + \text{Cwire} + \text{CL}) + 0.4 \text{Rwire} \text{Cwire} + 0.7 \text{Rwire} \text{CL} \]

- For long wires, delay \(\propto l^2 \)
 - ➔ Use repeaters to reduce delay as \(2(l/2)^2 < l^2 \)
- Delay with repeater:
 \[t_d = \left(l/l_s \right) (t_b + 0.4 l^2 \text{RC}) \]
 where \(l = \text{line length} \), \(l_s = \text{segment length} \), \(\text{RC} = \text{per unit length RC} \), \(t_b = \text{buffer delay} \)
RC lines

Optimal Repeater section length

\[l_s = \left(\frac{t_b}{0.4RC} \right)^{1/2} \]

Gives delay per unit length

\[v = 1.3 \left(\frac{t_b RC}{1} \right)^{-1/2} \]

- For 0.35 mm process
 \[l_s = 3.5 \text{ mm}, \quad v = 17.5 \text{ mm/ns} \]

Line geometry

- Increasing line width and spacing reduces RC per unit length
 - Until proximity effect kicks in

Can use overdrive to compensate for RC loss

- I.e. Equalization through wave shaping
 - Requires small swing signalling
 - Gives ~ 10% delay improvement
 - Increases Xtalk
 - Ckt overhead

![Diagram of signal waveform with overdrive](image)
Repeater Explosion!

From ITRS:

- In practice sub-optimal repeater insertion used

\[W = S = 2P_m \]
\[L_{\text{max}} = (310)^{1/2} \text{ mm} \]
2 adj. lines
Voltage vs. Current Sensing

Current Sensing
- Low impedance termination

\[R_L \approx 0 \]

Voltage Sensing
- High impedance term. (i.e. capacitive)

\[R_L \approx \infty \]

<table>
<thead>
<tr>
<th>Voltage-Mode Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_L = -j \frac{1}{\omega C_L})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Mode Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_L \approx -j \frac{1}{\omega C_L}</td>
</tr>
<tr>
<td>(Z_L \approx -j \frac{1}{\omega C_L}</td>
</tr>
<tr>
<td>(Z_L \approx -j \frac{1}{\omega C_L}</td>
</tr>
</tbody>
</table>

\(C_{\text{INT}} \)
\(R_{\text{INT}} \)

\(L \)
\(C \)
\(Z \)
\(\omega \)
\(\beta \)
\(V_{\text{out}} \)
\(R_{\text{in}} \)

\(\beta \)

\(V_F \)
\(A_V \)
\(Z_0 \)
\(R_F \)

©2003, Dr. Paul D. Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html
Current Mode Delay Analysis

\[V_{IN} \]

Interconnect RC (ns)

Delay (ns)

- distributed (N=1000)
- this work
- Sakurai’s model

Interconnect RC (ns)

Delay (ns)

- distributed (N=1000)
- this work
On-chip Current Mode Signalling

Decreased delay

Why?

Voltage Mode

\[\tau = R_O C_L \]

Current Mode

\[\tau = \frac{R_L R_O C_L}{R_L + R_O} \]

Impact:

- Fewer repeaters
- Narrower wires

At expense of DC power consumption
LRC lines

Can “tune” line

- Critically damped (or slightly underdamped in practice) gives min delay, rise time

Again, can equalize line to get optimum response

- FIR
- Wave-shaping
- Key: Simple circuits
Summary

Drivers require large transistor. What is important to avoid?

Large drivers \rightarrow large di/dt. How to reduce?

What are the advantages of current mode drivers?

What determines eye opening at Rx?
Summary

How can delay be minimized in on-chip lines?